Characterisation of radicals formed by the triazine 1,4-dioxide hypoxia-activated prodrug, SN30000.

نویسندگان

  • Robert F Anderson
  • Pooja Yadav
  • Deepa Patel
  • Jóhannes Reynisson
  • Smitha R Tipparaju
  • Christopher P Guise
  • Adam V Patterson
  • William A Denny
  • Andrej Maroz
  • Sujata S Shinde
  • Michael P Hay
چکیده

The radical species underlying the activity of the bioreductive anticancer prodrug, SN30000, have been identified by electron paramagnetic resonance and pulse radiolysis techniques. Spin-trapping experiments indicate both an aryl-type radical and an oxidising radical, trapped as a carbon-centred radical, are formed from the protonated radical anion of SN30000. The carbon-centred radical, produced upon the one-electron oxidation of the 2-electron reduced metabolite of SN30000, oxidises 2-deoxyribose, a model for the site of damage on DNA which leads to double strand breaks. Calculations using density functional theory support the assignments made.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reductive Metabolism Influences the Toxicity and Pharmacokinetics of the Hypoxia-Targeted Benzotriazine Di-Oxide Anticancer Agent SN30000 in Mice

3-(3-Morpholinopropyl)-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1,4-dioxide (SN30- 000), an analog of the well-studied bioreductive prodrug tirapazamine (TPZ), has improved activity against hypoxic cells in tumor xenografts. However, little is known about its biotransformation in normal tissues. Here, we evaluate implications of biotransformation of SN30000 for its toxicokinetics in NIH-III ...

متن کامل

Identification of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs.

Hypoxia is a prevalent feature of many tumors contributing to disease progression and treatment resistance, and therefore constitutes an attractive therapeutic target. Several hypoxia-activated prodrugs (HAP) have been developed, including the phase III candidate TH-302 (evofosfamide) and the preclinical agent SN30000, which is an optimized analogue of the well-studied HAP tirapazamine. Experie...

متن کامل

Design of Optimized Hypoxia-Activated Prodrugs Using Pharmacokinetic/Pharmacodynamic Modeling

Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP). HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000), are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A...

متن کامل

Small Molecule Therapeutics Dual Targeting of Hypoxia and Homologous Recombination Repair Dysfunction in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive malignancy with poor clinical outcome and few validated drug targets. Two prevalent features of TNBC, tumor hypoxia and derangement of homologous recombination (HR) repair, are potentially exploitable for therapy. This study investigated whether hypoxia-activated prodrugs (HAP) of DNA-damaging cytotoxins may inhibit growth of TNBC by simulta...

متن کامل

Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine)

Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alky...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 12 21  شماره 

صفحات  -

تاریخ انتشار 2014